➣ Reading Time: 14 minutes

前言

在機器學習的領域中,我們很常會需要用到 iou 的計算,
iou 全名為 intersection over union,
能替兩張圖形重疊的範圍提供一個參考分數,是一個相對具有參考意義的值。
本篇文章中也提供範例程式碼,
因為我自己也很常用XD,不時就會回來拿這段 function 去實作。

iou 的概念與公式

iou 基本上 = 兩矩形的交集 / 兩矩形的聯集

所以:

  • 完全重合時:得到最大值 1
  • 完全不重合時:得到最小值 0
  • 部分重合:得到 0~1 範圍的值

以下為圖解

iou

  • 圖片引用自:https://blog.csdn.net/IAMoldpan/article/details/78799857

用 python 實作計算 iou 的 function

這邊先講一下我們的 input,為兩個 bbox,
兩個 bbox 都是一個具有四個值的 list
分別儲存兩個矩形的 [x, y, w, h]

要使用時請務必注意傳入格式!

註:底下的 function 有使用到 python 3.8 以後才有的 f-string 功能,
沒辦法正常運行的可以考慮用 format 的方式將 f-string 的部分重寫。

def get_iou(bbox_ai, bbox_gt):
    iou_x = max(bbox_ai[0], bbox_gt[0]) # x
    iou_y = max(bbox_ai[1], bbox_gt[1]) # y
    iou_w = min(bbox_ai[2]+bbox_ai[0], bbox_gt[2]+bbox_gt[0]) - iou_x # w
    iou_w = max(iou_w, 0)
    print(f'{iou_w=}')
    iou_h = min(bbox_ai[3]+bbox_ai[1], bbox_gt[3]+bbox_gt[1]) - iou_y # h
    iou_h = max(iou_h, 0)
    print(f'{iou_h=}')

    iou_area = iou_w * iou_h
    print(f'{iou_area=}')
    all_area = bbox_ai[2]*bbox_ai[3] + bbox_gt[2]*bbox_gt[3] - iou_area
    print(f'{all_area=}')

    return max(iou_area/all_area, 0)

實驗與結果

這邊以 colab 進行實驗,因此有加一些額外的功能
(例如 colab 因為沒有視覺化視窗,不能用 cv2.imshow,改以用 matplotlib 套件代替)

colab 實驗連結 (可以自行遊玩):

https://colab.research.google.com/drive/1wMb28P4RJDjmqyoV_znbbXZwEg_9C3sV?usp=sharing

colab 實驗用程式碼:

from matplotlib import pyplot as plt
import numpy as np
import cv2

def show_img(img):
    image_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    plt.imshow(image_rgb)
    plt.show()

def draw_rectangle(img, bbox, color):
  left_up = (bbox[0], bbox[1])
  right_down =  (bbox[0]+bbox[2], bbox[1]+bbox[3])
  thickness = 1 # 寬度 (-1 表示填滿)
  cv2.rectangle(img, left_up, right_down, color, thickness) 

  return img

def get_iou(bbox_ai, bbox_gt):
    iou_x = max(bbox_ai[0], bbox_gt[0]) # x
    iou_y = max(bbox_ai[1], bbox_gt[1]) # y
    iou_w = min(bbox_ai[2]+bbox_ai[0], bbox_gt[2]+bbox_gt[0]) - iou_x # w
    iou_w = max(iou_w, 0)
    # print(f'{iou_w=}')
    iou_h = min(bbox_ai[3]+bbox_ai[1], bbox_gt[3]+bbox_gt[1]) - iou_y # h
    iou_h = max(iou_h, 0)
    # print(f'{iou_h=}')

    iou_area = iou_w * iou_h
    # print(f'{iou_area=}')
    all_area = bbox_ai[2]*bbox_ai[3] + bbox_gt[2]*bbox_gt[3] - iou_area
    # print(f'{all_area=}')

    return max(iou_area/all_area, 0)

shape = (100, 100, 3) # y, x, RGB

# 第一種方法,直接建立全白圖片 100*100
img = np.full(shape, 255).astype(np.uint8)

bbox_1 = [10, 20, 30, 40]
bbox_2 = [20, 30, 40, 50]

img = draw_rectangle(img, bbox_1, color=(0, 0, 255))
# show_img(img)
img = draw_rectangle(img, bbox_2, color=(0, 255, 0))
show_img(img)

print(get_iou(bbox_1, bbox_2))

此為,為了方便解釋,我們也加了畫矩形的功能在裡面。

實驗結果

看下圖,我們可以大概知道圖形的分布

iou-1

  • 首先是紅框 (bbox_1),面積為 30*40=1200
  • 再來是綠框 (bbox_2),面積為 40*50=2000
  • 紅綠框交疊部分 ,面積為 (40-20)*(60-30)=600
  • 紅綠框聯集,面積為 1200+2000-600 = 2600 (兩個相加後,扣掉重複部分)

得到結果 600/2600 = 0.23076923076 (就是我們上面最後印出來的結果囉!)

程式碼詳細說明

基本上我們在做的事情就是

  • max(x1, x2) ,得到交集的左邊 x
  • max(y1, y2) ,得到交集的上面 y
  • min(x1+w1, x2+w2) ,得到交集的右邊 x
  • min(y1+h1, y2+h2) ,得到交集的下面 y

就可以計算囉!

但也是會有沒考慮到的地方(不是特例):

iou-2

上面的圖,如果照我們的公式,

我們取

  • max(x1, x2) ,得到圖中右邊的箭頭 x
  • min(x1+w1, x2+w2) ,得到圖中左邊的箭頭 x

結果算出來就是負的了…

發現潛在的計算問題了嗎?

沒錯,也就是說,當我們發現 min(x1+w1, x2+w2) < max(x1, x2) 時 (相減會負),
或是 min(y1+h1, y2+h2) < max(y1, y2) 時 (相減會負),

我們就要讓他答案直接為 0 ! (也要避免負負得正!)

這就是為什麼我們要做下面 max 的原因。

iou_w = max(iou_w, 0)
iou_h = max(iou_h, 0)

關於最後的計算

你可能會想問,為什麼最後還要做以下的 max?

return max(iou_area/all_area, 0)

其實只是為了再次避免我們算出負的,但基本上有上面那一點的預防,
我們其實這個避免 0 的功能應該是用不到的XD,
但寫了也是保險!

想看 C++ 計算 iou 方法,可見我的另外一篇文

Reference

https://www.cnblogs.com/lfri/p/10498876.html

⭐Python OpenCV 相關文章整理⭐:
⭐基礎知識篇⭐:
1.【OpenCV】1 – 安裝 python OpenCV install 電腦中圖片的基本概念總整理
2.【OpenCV】2 – OpenCV 圖片的讀取、顯示、存檔 (load, show, save),附贈簡易理解「相對路徑」與「絕對路徑」
3.【OpenCV】OpenCV 利用 python OpenCV 查詢 image 大小, img shape sample code (內附範例程式碼)
⭐基本圖像處理篇⭐:
1.【OpenCV】OpenCV 利用 python OpenCV 縮放圖片 image 大小, cv2 resize (內附程式碼)
2.【OpenCV】3 – python OpenCV 的剪裁、旋轉、縮放 (crop, rotate, resize)
3.【OpenCV】4 – 運用 OpenCV 調整光線 (modify brightness, intensity)
4.【OpenCV】5 – 運用 OpenCV 調整亮度、飽和度(透過轉移至 HLS 顏色空間) modify lightness, saturation
5.【OpenCV】6 – 運用 OpenCV 調整色調(冷色系/暖色系)、色溫(白平衡)modify color temperature, white balance
6.【OpenCV】7 – 運用 OpenCV 為圖片增加一些顆粒感 (增加高斯噪點) add gaussian noise
7.【OpenCV】8 – 運用 OpenCV 改變圖片的對比度 modify contrast (內含:網路上常見錯誤調整對比度方式的分析)
8.【OpenCV】9 – 運用 OpenCV 降低圖片的高光 reduce highlights
9.【OpenCV】11 – OpenCV 建立新空白圖、畫點、畫圓 create new pictures, draw points and draw circle
10.【OpenCV】12 – 運用 OpenCV 畫線、畫矩形、畫橢圓 draw lines, draw rectangle, draw ellipse
11.【OpenCV】13 – 運用 OpenCV 在圖片上寫文字、查色碼、顯示色碼顏色 write text, get and show RGB Color Code
⭐進階圖像處理篇⭐:
1.【OpenCV】14 – 運用 OpenCV 顯示圖片直方圖、分離與合併RGB通道 show histogram, split, merge RGB channel
2.【OpenCV】15 – OpenCV 當然也有像 ps 圖層的功能! 什麼?圖片也能加減法?! Add, Subtract, AddWeighted
3.【OpenCV】16 – 運用 OpenCV 幫助我們找圖片的輪廓(高斯模糊、Canny) cv2.GaussianBlur, cv2.Canny
4.【OpenCV】17 – 運用 OpenCV 的終極圖層處理大全, 想P圖該怎麼P (bitwise_or, and, xor, not, addWeighted)
5.【OpenCV】18 – 運用 OpenCV 做圖片二值化,產生黑白的圖片吧!cv2.threshold 各種選擇參數大全
6.【OpenCV】19 – OpenCV 的圖片自適應二值化,產生更好效果的黑白圖片!cv2.adaptiveThreshold
7.【OpenCV】20 – OpenCV 的各種 Threshold 方法整理,Otsu’s Threshold 大津二值化,自動計算最佳閥值,做出最好的黑白效果圖!
8.【OpenCV】26 – 銳化圖片,將模糊的圖片變得更清晰吧! sharpen images
⭐冷門應用篇⭐:
1.【OpenCV】python OpenCV 分析影像模糊程度 檢測圖片模糊 blur sample code (內含範例程式碼)
2.【OpenCV】21 – OpenCV 也有 photoshop 的魔術棒工具?! 漫水填充法 cv2.floodFill (Magic Wand Tool)
3.【OpenCV】27 – 顏色映射 – OpenCV 內建的自動配色?! auto recolor images, cv2.applyColorMap
⭐影片處理篇⭐:
1.【OpenCV】OpenCV 利用 python OpenCV 將圖片製作成一部影片 (內附程式碼) make video from images
2.【OpenCV】OpenCV 利用 python OpenCV 將一部影片拆成一張張圖片 sample code (內附程式碼) get images from video
3.【OpenCV】用 OpenCV 開啟 rtsp 即時影像串流 sample code (內含範例程式碼) – python OpenCV rtsp
4.【OpenCV】python pyinotify video player 利用 OpenCV + inotify 製作即時影片播放器 sample code (內含範例程式碼)
⭐綜合應用篇⭐:
1.【OpenCV】10 – 日系濾鏡總集篇,運用 OpenCV 製作屬於自己的濾鏡吧 (內含可於網頁上直接完成濾鏡的 colab )
2.【OpenCV】22 – 綜合運用1,用 OpenCV 來P圖囉! 來運用各種之前學習的各種東西吧! merge two images
3.【OpenCV】23 – 綜合運用2,(資料標註) 用 OpenCV 來製作一個標記點小工具吧! 滑鼠與視窗控制 label points
4.【OpenCV】24 – 綜合運用3,(應用app) 用 OpenCV 來製作一個照片文件掃描機吧! photo scanner 透視投影
5.【OpenCV】25 – 綜合運用4,用 OpenCV 來把圖片p到各種奇怪的地方吧! 透視投影 cv2.warpPerspective, merge two images
6.【OpenCV】28 – Final Project v1,於是沒錢買ps的我,開發了自己的photoshop,我的天啊 My photoshop made by OpenCV
7.【OpenCV】29 – Final Project v2,於是沒錢買ps的我,開發了自己的photoshop,我的天啊 My photoshop made by OpenCV
8.【OpenCV】30 – Final Project v3,於是沒錢買ps的我,開發了自己的photoshop,我的天啊 My photoshop made by OpenCV
9.【OpenCV】用 python OpenCV 計算 iou 的方法 (內附範例程式碼) sample code
⭐【喜歡我的文章嗎? 幫忙按讚除了鼓勵外,我也會將部分所得捐出!
如果喜歡我的文章,請幫我在下方【按五下Like】 (Google, Facebook 免費註冊),會由 「LikeCoin」 贊助作者鼓勵繼續創作,扣除掉網站本身經營的成本 (可惜目前還是虧本的),我會將 【50% 收益全部捐出】 並公開發文,讀者們「只需幫忙按讚,完全不用出錢」哦!

likecoin-steps