分類

展開全部 | 收合全部

分類

展開全部 | 收合全部

【Google ML】21 – Lesson 7 – 梯度下降法 (Gradient Descent)介紹,使用「梯度下降法」決定ML模型中參數修正的「方向」與「步長(step size)」

前言

這幾天的文章會是一系列的,會需要一起看才比較能看懂整個ML模型的輪廓,
然而因為一天能寫的內容量有限,所以我會在前言部分稍微說明我寫到哪。

複習一下ML的整個訓練過程

因為ML模型的訓練階段章節內容會分很多部分,我們要先確認好自己在哪個階段,
以免吸收新內容卻不知道用在內容的什麼地方。

★ML的整個「訓練過程」:這裡以監督式學習(Supervised Learning)為例

階段要做的事情簡介
(訓練前)決定資料集與分析資料你想要預測的是什麼資料? 這邊需要先知道 examplelabelfeatures的概念。介紹可參考:【Day 15】,而我們這次作為範例的訓練資料集介紹在【Day 19】
(訓練前)決定問題種類依據資料,會知道是什麼類型的問題。regression problem(回歸問題)? classification problem(分類問題)? 此處可參考:【Day 16】、與進階內容:【Day 17】
(訓練前)決定ML模型(ML models)依據問題的種類,會知道需要使用什麼對應的ML模型。回歸模型(Regression model)? 分類模型(Classification model)? 此處可參考:【Day 18】神經網路(neural network)? 簡介於:【Day 25】
(模型裡面的參數)ML模型裡面的參數(parameters)超參數(hyper-parameters) 此處可參考:【Day 18】
(訓練中) 調整模型評估當前模型好壞損失函數(Loss Functions):使用損失函數評估目前模型的好與壞。以MSE(Mean Squared Error), RMSE(Root Mean Squared Error), 交叉熵(Cross Entropy)為例。此處可參考:【Day 20】
(訓練中) 調整模型修正模型參數梯度下降法 (Gradient Descent)為例:決定模型中參數的修正「方向」與「步長(step size)」此處可參考:【Day 21】
(訓練中) 調整腳步調整學習腳步透過學習速率(learning rate)來調整ML模型訓練的步長(step size),調整學習腳步。(此參數在訓練前設定,為hyper-parameter)。此處可參考:【Day 22】
(訓練中) 加快訓練取樣與分堆設定batch size,透過batch從訓練目標中取樣,來加快ML模型訓練的速度。(此參數在訓練前設定,為hyper-parameter)。與迭代(iteration),epoch介紹。此處可參考:【Day 23】
(訓練中) 加快訓練檢查loss的頻率調整「檢查loss的頻率」,依據時間(Time-based)步驟(Step-based)。此處可參考:【Day 23】
(訓練中) 完成訓練(loop) -> 完成重覆過程(評估當前模型好壞 -> 修正模型參數),直到能通過「驗證資料集(Validation)」的驗證即可結束訓練。此處可參考:【Day 27】
(訓練後)訓練結果可能問題「不適當的最小loss?」 此處可參考:【Day 28】
(訓練後)訓練結果可能問題欠擬合(underfitting)?過度擬合(overfitting)? 此處可參考:【Day 26】
(訓練後)評估 – 性能指標性能指標(performance metrics):以混淆矩陣(confusion matrix)分析,包含「Accuracy」、「Precision」、「Recall」三種評估指標。簡介於:【Day 28】、詳細介紹於:【Day 29】
(訓練後)評估 – 新資料適用性泛化(Generalization):對於新資料、沒看過的資料的模型適用性。此處可參考:【Day 26】
(訓練後)評估 – 模型測試使用「獨立測試資料集(Test)」測試? 使用交叉驗證(cross-validation)(又稱bootstrapping)測試? 此處可參考:【Day 27】
(資料分堆的方式)(訓練前) 依據上方「模型測試」的方法,決定資料分堆的方式:訓練用(Training)、驗證用(Validation)、測試用(Test)。此處可參考:【Day 27】

而今天的文章我們就要來介紹所謂的梯度下降法 (Gradient Descent)
與ML模型中參數的修正「方向」與「步長(step size)」概念。

Course – Launching into Machine Learning

第三章節的課程地圖:(紅字標記為本篇文章中會介紹到的章節)
* Optimization
* Introduction to Optimization
* Introduction
* Defining ML Models
* Defining ML Models
* Introducing the Natality Dataset
* Introducing Loss Functions
* Gradient Descent
* Gradient Descent
* Troubleshooting a Loss Curve
* ML Model Pitfalls
* TensorFlow Playground
* Lab: Introducing the TensorFlow Playground
* Lab: TensorFlow Playground – Advanced
* Lab: Practicing with Neural Networks
* Loss Curve Troubleshooting
* Performance Metrics
* Performance Metrics
* Confusion Matrix
* Module Quiz


1. Gradient Descent

課程地圖
* Optimization
* Gradient Descent
* Gradient Descent

在昨天的章節中,我們介紹了損失函數(loss function)的計算方式,
然而損失函數loss function只能「告訴我們參數的好壞」,
我們仍需要一個「修改參數的方法」,

今天我們要介紹的梯度下降法 (Gradient Descent),就是一種「修改參數的方法」。

自己的註1:

損失函數(loss function)是判斷誤差大小的計算方法,然而還需要一個「修改參數的方法」。像這邊介紹的梯度下降法 (Gradient Descent)就是一個基於損失函數(loss function)的值去「修改參數的方法」。

自己的註2:

現在機器學習可使用於「修改參數的方法」有非常多種,然而這邊只介紹最經典的梯度下降法 (Gradient Descent),仍有其他好的「修改參數的方法」可以使用。

https://ithelp.ithome.com.tw/upload/images/20190924/20120424QO6pe6cJMK.png

梯度下降法 (Gradient Descent),是一種「搜尋參數的策略」,
他是在一個參數空間中的每個點所代表的loss上,沿著表面往下走的過程,如上圖。

自己的註:

我們從上一節可以知道一個點表示一組參數,而一組參數能算出一個loss值(代表誤差多少),
我們可以將這個「loss值的計算結果」想像成「山的高度」,而對應位置就是參數的點,
就能夠畫出像上圖的等高線圖。

https://ithelp.ithome.com.tw/upload/images/20190924/20120424m4lSnEIxVN.png

然而我們通常不可能把所有的loss都計算出來,我們頂多知道要評估哪個點時,
才會去計算那一個點的loss,例如說我們可能只知道像上圖的兩個點。

但即使如此,我們仍然要知道接下來我們要往哪裡移動,才能找到最小值。

自己的註:

還記得「最小化loss」是我們的訓練目標嗎?
另外我們所謂的「修正模型參數」,也就等同於「修正點的位置」,
那「最小的loss」會在這個像山的圖的哪邊呢?
當然是山谷的地方,所以上面才說「梯度下降法」像是「沿著表面往下走的過程」。

https://ithelp.ithome.com.tw/upload/images/20190924/20120424h2WRQlRKR9.png

我們把這個問題稍微拆解成兩個不同卻同樣重要的問題。
* 我應該往哪個方向移動?
* 我應該要走多遠?

現在我們先做個簡單的假設,我們先「固定我們走一步的移動距離」,
「走一步的移動距離」又稱為,我們只討論我們「該往哪個方向移動」。

https://ithelp.ithome.com.tw/upload/images/20190924/20120424SwRUIBXaXn.png

而這使得我們能得到上述的簡單演算法。

當 loss > 某一個很小的常數(epsilon)時,我們先計算方向,
然後對於模型中的參數(parameter),
設定新的值為我們現在的點加上【往我們要的方向「走幾步」乘上「步長(step size)」】,
然後針對新的點計算新的loss。

https://ithelp.ithome.com.tw/upload/images/20190924/20120424RatNrL7Mvv.png

我們可以用地形圖或等高線圖的概念去想,
等高線上的每一條線代表一定的深度。
線與線的距離越近,表示那段越陡峭。

就像上面這張圖的每一個點,我們可以從點與點之間看出點移動的方式。
這就是一個從頂部邊緣開始漸漸往下走,直到走到最終的最小值。

另外一個可以注意的點是:因為我們現在固定步長(step size),所以每個點之間的距離是一樣的。
我們再來試著想一個問題,如果步長(step size)太小,我們的訓練會花很多時間。
但我們還是能夠保證能找到「可能的最小值」,
這裡會說是「可能的最小值」是因為「最小值可能不只一個」,後面我們會再討論。

自己的註1:

如果步長(step size)太小,我們的訓練會花很多時間。
這句話也可以想像為走一步的距離小,走道目標的時間就會長。

自己的註2:

另外「最小值可能不只一個」,是因為這張圖只有一個山谷。
但想想現實生活中的山谷也應該不是只有一個吧? 這裡也是一樣的。

https://ithelp.ithome.com.tw/upload/images/20190924/20120424WXxyCdysid.png
(如上面這張圖,從開始點到走到山谷,步長(step size)越小,到山谷花的時間自然就要越長)

https://ithelp.ithome.com.tw/upload/images/20190924/20120424oCsPfuicRn.png

既然我們說步長(step size)越小,花的時間越長,
那我們走大步一點總會比較快了吧? 然而事情也沒有這麼順利。

如果步長(step size)太大,你有可能從loss表面的其中一面甚至直接跳到另外一面,
甚至有可能整個直接跳出這個山谷中,然後到了全新未知的地方,如上圖。

因為這個原因,步長(step size)太大,很有可能導致ML模型模辦法收斂。

自己的註1:

可以想像成,人走一個超級大步,連山谷都跨出去都有可能的那麼大步。(現實中可能有點扯啦XD)
可以想像成巨人之類的XDDD,總之太大步也不行,
有可能直接跨出山谷,或跨到山谷的另外一面。

自己的註2:

這裡突然提到「收斂」一詞,其實我們確實在找谷底的過程就是在做「收斂」的動作,
「當抵達谷底時」=「收斂完成」=「找到最小的loss」=「完成學習目標
不能收斂的原因就是跟上面所說一樣,走太大步了! 谷底都被跨過了! 找不到谷底了!

https://ithelp.ithome.com.tw/upload/images/20190924/20120424UPbZf74JaR.png

從上面的例子我們就可以知道,我們應該要指定一個剛剛好的步長(step size),
不可以太大、也不可以太小。
但想要找到這個剛剛好的值,似乎是沒那麼容易?

https://ithelp.ithome.com.tw/upload/images/20190924/20120424WuxdDIjmE7.png

我們觀察左邊的圖與右邊的圖,
我們都給這兩張圖設定一樣的步長(step size),
* 左邊的圖沒問題。
* 但在右邊的圖中,一開始的移動也許還可以,但我們看到在接近山谷時,
這個我們設定的步長卻讓他一腳跨過了山谷,造成了訓練失敗。

所以從上面例子我們知道一個固定的步長(step size),
似乎沒辦法適用於所有的ML模型,那我們該怎麼改變步長(step size)呢?

https://ithelp.ithome.com.tw/upload/images/20190924/20120424ocOh5e4okK.png

我們這裡用一些斜率與曲線變化的速率,
使我們對步長(step size)與方向(direction)更有概念。

我們看上圖,圖下方表示圖上方圖曲線(此曲線就是loss的變化曲線)的各點斜率值,
我們發現值較大的地方通常比值較小的地方離底部更遠。

自己的註:

(這裡的值指的是絕對值之後的值,也就是說下圖負越多或正越多離底部越遠。)
* 如果斜率值越小,表示我們「快要到底部了」(要走一小步)
* 如果斜率值越大,表示我們「離底部還很遠」(要走一大步)

另外再注意:
* 如果斜率是負,表示我們的「「谷底在右手邊」(向右找最小值)
* 如果斜率是正,表示我們的「谷底在左手邊」(向左找最小值)

https://ithelp.ithome.com.tw/upload/images/20190924/20120424IOp91NWHsG.png

我們換一個點看,例如點B,
他有「正的斜率」,告訴我們要「向左找最小值」,
另外他的「斜率值很大」,告訴我們「要走一大步」。

https://ithelp.ithome.com.tw/upload/images/20190924/20120424tmBFIyd06g.png

我們再換另一個點看,例如點C,
他有「正的斜率」,告訴我們要「向左找最小值」,
另外他的「斜率值很小」,告訴我們「要走一小步」,以避免走過頭。

https://ithelp.ithome.com.tw/upload/images/20190924/201204241oV3BHJ399.png

我們現在就將我們的一開始所說的「固定的步長(step size)」,
用一個新函數「computeDerivative」來取代掉,
同時這個函數也能夠同時替我們決定「要前進的方向(derivative)」
我們將原本的點減掉「loss值的偏微分」,以獲得新的點。

自己的註:

也就是說,我們對loss值偏微分,依照剛剛上面的概念,
我們能同時獲得「應該前進的方向」與「要走多遠」。
啊對了,這方法就叫做梯度下降法 (Gradient Descent)
這邊就已經介紹完了XDD,梯度就是指「loss的偏微分」,下降就是「找谷底」。
「loss的偏微分」:yloss值,偏微的對象x是所有模型內的參數(parameter),
可以參考更上方的二維圖:「y反應loss值的大小,而x反應的是參數所在位置。」
而上圖中的點也可以注意他的變化:「該走快時走很快,該走慢時走很慢,且走的方向很正確。」

我們似乎找到了一個非常好的方法,
他能幫我們找到合適的步長(step size)與要前進的方向(direction),
但這樣就沒有問題了嗎?

以經驗來說,ML的種種問題集之中,我們所能建的loss表面,
這個算法通常會花費較多的時間,可能會找到次小值而非最小值,甚至是沒有完成。

自己的註:

  • 花費較多的時間」:梯度下降法 (Gradient Descent)相對比較新的算法來說,確實較慢,但並非不能用(下面也有提到XD)
  • 找到次小值而非最小值」:這確實是常見問題,我們可以想像等高線上有很多山谷,我們從找到第一個點時,就會開始往一個山谷的谷底直直前進。然而,如果這個山谷不是全部山谷最深的,那我們就找不到最深的山谷。不過目前也已經有新方法能解決這個搜索的問題。
  • 沒有完成」:有時候花費時間太長,而且特別是在接近底部的時候,可以想像一個問題,我們在做「y = 1/x」的畫圖時,那種趨近x軸卻永遠碰不到x軸的感覺(y無限接近0, x無限增加),收斂的感覺也很像這樣,一直無限接近,但遲遲沒有到。

梯度下降法 (Gradient Descent)仍然是一個常被使用的方法,
這也表示像上述可能會出現問題的資料集,我們往往很少會碰到。


本文同步發佈在: 第 11 屆 iT 邦幫忙鐵人賽
【Day 21】 Google ML – Lesson 7 – 梯度下降法 (Gradient Descent)介紹,使用「梯度下降法」決定ML模型中參數修正的「方向」與「步長(step size)」


參考資料

⭐Google Machine Learning 相關文章整理⭐:
1.訂閱課程【Google ML】1 – Google ML – 參賽原因 與 就先從認識 coursera 與訂閱課程開始第一天吧
⭐ML 基礎知識篇⭐:
1.基礎ML知識什麼是ML? 為什麼ML最近才紅起來? 可參考:【Day 3】
2.設計ML問題如何設計一個ML問題?可參考:【Day 4】
3.ML與一般算法比較比較一般算法與ML算法,看出ML的優勢。可參考:【Day 11】
⭐ML 應用策略篇⭐:
1.ML的成功策略使用ML要成功,常需要的關鍵策略。可參考:【Day 5】
2.ML各階段與比重分配企業運行ML時,在ML的各階段應該放的比重與心力。可參考:【Day 6】
3.ML失敗的常見原因大部分企業使用ML卻失敗的前十大主因。可參考:【Day 6】
4.企業如何引入MLML在企業運行的五大階段與注意事項。 可參考:【Day 7】
⭐GCP 認識篇⭐:
1.在GCP上運行ML的階段在GCP上運行ML大概有哪五大階段? 可參考:【Day 2】
2.GCP上ML的介紹GCP上ML的介紹。可參考:【Day 8】【Day 11】
3.已訓練好的ML模型已訓練好的ML模型。建議可直接使用,不需要再自己訓練。如:Vision API(圖片辨識), Video intelligence API(影片辨識), Speech API(語音辨識), Translation API(語言翻譯), Natural Language API(自然語言處理)。介紹:【Day 4】詳細整理與比較:【Day 12】lab實作:【Day 14】
⭐GCP 上的 lab 實作篇⭐:
1.Lab 事前準備Lab 0 – 在GCP上開始lab前的事前準備與注意事項。可參考:【Day 9】
2.GCP上使用 VMLab 1 – 在GCP上分析地震資料與製圖,並儲存在雲端。可參考: 【Day 10】
3.BigQuery 與 DatalabLab 2 – 使用 BigQuery 與 Datalab 視覺化分析資料。可參考:【Day 13】
4.google ML APIsLab 3 – 使用google已訓練好的ML模型進行實作。如:Vision API(圖片辨識), Video intelligence API(影片辨識), Speech API(語音辨識), Translation API(語言翻譯), Natural Language API(自然語言處理)。可參考:【Day 14】
⭐ML中的不同學習種類⭐:
1.【Day 15】 監督式學習(Supervised Learning) 與 非監督式學習(Unsupervised Learning) 的介紹和比較
⭐訓練「一個」ML模型⭐:
(這裡以 監督式學習(Supervised Learning) 為例)
1. (訓練前)決定資料集與分析資料你想要預測的是什麼資料? 這邊需要先知道 example、label、features的概念。介紹可參考:【Day 15】而我們這次作為範例的訓練資料集介紹在:【Day 19】
2. (訓練前)決定問題種類依據資料,會知道是什麼類型的問題。regression problem(回歸問題)? classification problem(分類問題)? 此處可參考:【Day 16】與進階內容:【Day 17】
3. (訓練前)決定ML模型(ML models)依據問題的種類,會知道需要使用什麼對應的ML模型。回歸模型(Regression model)? 分類模型(Classification model)? 此處可參考:【Day 18】神經網路(neural network)? 簡介於:【Day 25】
4.(模型裡面的參數)ML模型裡面的參數(parameters)與超參數(hyper-parameters) 此處可參考:【Day 18】
5. (訓練中) 調整模型評估當前模型好壞損失函數(Loss Functions):使用損失函數評估目前模型的好與壞。以MSE(Mean Squared Error), RMSE(Root Mean Squared Error), 交叉熵(Cross Entropy)為例。此處可參考:【Day 20】
6. (訓練中) 調整模型修正模型參數以梯度下降法 (Gradient Descent)為例:決定模型中參數的修正「方向」與「步長(step size)」此處可參考:【Day 21】
7. (訓練中) 調整腳步調整學習腳步透過學習速率(learning rate)來調整ML模型訓練的步長(step size),調整學習腳步。(此參數在訓練前設定,為hyper-parameter)。此處可參考:【Day 22】
8. (訓練中) 加快訓練取樣與分堆設定batch size,透過batch從訓練目標中取樣,來加快ML模型訓練的速度。(此參數在訓練前設定,為hyper-parameter)。與迭代(iteration),epoch介紹。此處可參考:【Day 23】
9. (訓練中) 加快訓練檢查loss的頻率調整「檢查loss的頻率」,依據時間(Time-based)與步驟(Step-based)。此處可參考:【Day 23】
10. (訓練中) 完成訓練(loop) -> 完成重覆過程(評估當前模型好壞 -> 修正模型參數),直到能通過「驗證資料集(Validation)」的驗證即可結束訓練。此處可參考:【Day 27】
11. (訓練後)訓練結果可能問題「不適當的最小loss?」 此處可參考:【Day 28】
12. (訓練後)訓練結果可能問題欠擬合(underfitting)?過度擬合(overfitting)? 此處可參考:【Day 26】
13. (訓練後)評估 – 性能指標性能指標(performance metrics):以混淆矩陣(confusion matrix)分析,包含「Accuracy」、「Precision」、「Recall」三種評估指標。簡介於:【Day 28】詳細介紹於:【Day 29】
14. (訓練後)評估 – 新資料適用性泛化(Generalization):對於新資料、沒看過的資料的模型適用性。此處可參考:【Day 26】
15. (訓練後)評估 – 模型測試使用「獨立測試資料集(Test)」測試? 使用交叉驗證(cross-validation)(又稱bootstrapping)測試? 此處可參考:【Day 27】
16.(資料分堆的方式)(訓練前) 依據上方「模型測試」的方法,決定資料分堆的方式:訓練用(Training)、驗證用(Validation)、測試用(Test)。此處可參考:【Day 27】
⭐從所有ML模型的訓練結果中,找到「最好的」ML模型⭐:
( 原因:「訓練好一個模型」不等於「找到最好的模型」 )
1.(訓練模型)【Day 27】 使用「訓練資料集(Training)」訓練模型(調整參數),也就是「上方表格」在做的內容
2.(結束訓練)【Day 27】 訓練到通過「驗證資料集(Validation)」結束訓練(未達到overfitting的狀態前)
3.(模型再調整)【Day 27】 超參數(hyperparameters)調整或神經網路的「layer數」或「使用的node數」(一些訓練前就會先決定的東西)
4.(loop)【Day 27】 (模型再調整)後,重複上述(訓練模型)、(結束訓練),完成訓練新的模型
5.(找到最佳模型)【Day 27】 從「所有訓練的模型」中,找到能使「驗證用資料集(Validation)」最小的loss,完成(找到最佳模型)
6.(決定是否生產)【Day 27】 可以開始決定要不要將此ML模型投入生產。此時我們可以使用「獨立測試資料集(Test)」測試? 使用交叉驗證(cross-validation)(又稱bootstrapping)測試?
⭐訓練 ML 模型的小實驗⭐:
1.【Day 24】 TensorFlow Playground 的簡介與介面介紹
2.【Day 24】 learning rate 的改變對訓練過程的影響
3.【Day 25】 使用神經網路(neural network)分類資料
4.【Day 25】 觀察batch size如何影響gradient descent
⭐30天內容回顧與課程索引, 參賽心得, 未來計畫與感謝⭐:
1.【Google ML】30 – 30天內容回顧與課程索引, 參賽心得, 未來計畫與感謝
⭐【喜歡我的文章嗎? 歡迎幫我按讚~ 讓基金會請創作者喝一杯咖啡!
如果喜歡我的文章,請幫我在下方【按五下Like】 (Google, Facebook 免註冊),會由 「LikeCoin」 贊助作者鼓勵繼續創作,讀者們「只需幫忙按讚,完全不用出錢」哦!

likecoin-steps
Howard Weng
Howard Weng

我是 Howard Weng,很多人叫我嗡嗡。這個網站放了我的各種筆記。希望這些筆記也能順便幫助到有需要的人們!如果文章有幫助到你的話,歡迎幫我點讚哦!
另外,因為定位是「個人的隨手筆記」,有些文章內容「⚠️可能我理解有誤⚠️」或「?只寫到一半?」,如果有發現這樣的情況,歡迎在該文章的最下面留言提醒我!我會儘快修正或補上!感謝大家的建議與幫忙,讓網站能變得更好?

文章: 890

★留個言吧!內容有誤或想要補充也歡迎與我討論!